Midsemestral examination M.Math. Ist year Subject - Number Theory : Instructor - B.Sury October 16, 2003

Not all questions carry equal marks. Any score of more than 100 will be counted as 100. Attempt at the most ONE question out of questions 1 to 3, TWO out of questions 4 to 6, THREE out of questions 7 to 10, and THREE out of questions 11 to 15. Question 16 is compulsory.

Q 1 (12 marks).

Use the quadratic reciprocity law to decide whether $x^2 + 5x \equiv 12 \mod 31$ has solutions. If it has a solution, find one.

Q 2 (8 marks).

(a) If $p \equiv 1 \mod 4$, prove that $\sum_{a=1}^{p-1} a(\frac{a}{p}) = 0$. (b) If p > 3, prove that $\sum_{\left(\frac{a}{n}\right)=1} a \equiv 0 \mod p$.

Q 3 (10 marks).

Let m_1, \dots, m_r be pairwise coprime natural numbers. Let a_1, \dots, a_r be so that $(a_i, m_i) = 1$ for all i. Prove that there are infinitely many prime numbers p such that $p \equiv a_i \mod m_i$ for all $i \leq r$.

Hint : You may use Dirichlet's theorem.

Q 4 (12 marks).

Show that every element of a finite field is a sum of two squares.

Q 5 (15 marks).

Let p be an odd prime and $(a_i, b_i) \in \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}; 1 \leq i \leq 3p-2$. (a) Apply the Chevalley-Warning theorem to the set of three polynomials $\sum_{i=1}^{3p-2} a_i X_i^{p-1}, \sum_{i=1}^{3p-2} b_i X_i^{p-1} \text{ and } \sum_{i=1}^{3p-2} X_i^{p-1}$

to obtain a set T of cardinality p or 2p for which $\sum_{i \in T} (a_i, b_i) = (0, 0) \in$ $\mathbf{Z}/p\mathbf{Z} \times \mathbf{Z}/p\mathbf{Z}.$

(b) If T has cardinality 2p, say, $T = \{1, 2, \dots, 2p\}$, apply the Chevalley-Warning theorem to the set of polynomials $\sum_{i=1}^{2p-1} a_i X_i^{p-1}, \sum_{i=1}^{2p-1} b_i X_i^{p-1}$, and $\sum_{i=2p}^{3p-2} X_i^{p-1}$

to obtain a set S with at the most p elements so that $\sum_{i \in S} (a_i, b_i) = (0, 0) \in$ $\mathbf{Z}/p\mathbf{Z} \times \mathbf{Z}/p\mathbf{Z}$.

Q 6 (12 marks).

Let F be a finite field of cardinality q and let $v : F \to \mathbf{Z}$ be the map defined by v(0) = q - 1 and v(a) = -1 for $a \neq 0$. (a) If $b \in F$, prove for each m that

$$\sum_{c_1+\dots+c_m=b} v(c_1)\cdots v(c_m) = v(b)q^{m-1}.$$

(b) Using (a) or otherwise, show that when q is even, the number of solutions of $x_1x_2 + x_3x_4 + x_{99}x_{100} = 1$ in F^{100} is $q^{99} - q^{49}$.

Q 7 (10 marks).

Let $f = a_0 + a_1 X + \dots + a_n X^n \in \mathbf{Q}_p[X]$ be irreducible of degree $n \ge 1$, where $f(0) \ne 0$. Use Hensel's lemma to prove that if $a_0, a_n \in \mathbf{Z}_p$, then $f \in \mathbf{Z}_p[X]$.

Q 8 (6 marks).

Show that \mathbf{Z}_p is a Hausdorff space in which connected sets are points.

Q 9 (12 marks).

Let p be an odd prime and a, b, c integers such that p does not divide any of them. Use Hensel's lemma (in several variables) to prove that $aX^2 + bY^2 + cZ^2 = 0$ has a non-trivial solution in \mathbf{Q}_p .

Hint : You may use the Chevalley-Warning theorem for the above polynomial reduced modulo p.

Q 10 (8 marks).

Define \mathbf{Z}_p . Show that for each $x \in \mathbf{Z}_p$, there is a unique sequence $\{x_n\}$ of integers with $0 \leq x_n < p^n$ and $x_{n+1} \equiv x_n \mod p^n$ for all n, which converges to x in \mathbf{Q}_p .

Q 11 (6 marks).

If the Dirichlet series $\sum_{n\geq 1} a_n n^{-s}$ converges at $s = s_0$, prove that it converges absolutely for all s with Re $s > Re s_0 + 1$.

Give an example (without proof) to show that the abscissa of absolute convergence σ_a could be equal to $\sigma_c + 1$, where σ_c is the abscissa of convergence.

Q 12 (12 marks).

If $f(s) = \sum_{n \ge 1} a_n n^{-s} = \zeta(s)\zeta(s-2)$, prove that f(s) converges for Re s > 3. Find an expression for a(n). What is a(10)?

Q 13 (8 marks).

Prove, using Abel's partial summation or otherwise, that the Riemann zeta

function $\zeta(s) = \sum_{n \ge 1} n^{-s}$ has a meromorphic continuation to Re s > 0 with a simple pole at s = 1 and no other poles.

Q 14 (10 marks).

Let $f \in \mathbf{Z}[X]$ be of degree $n \geq 1$. If, for each prime $p, f(p) = q^r$ for some prime q and some $r \ge 1$, prove that $f(X) = X^n$.

Q 15 (12 marks).

Given that $\zeta(s) - \frac{1}{s-1}$ is analytic in Re s > 0, and that $L(1, \chi) \neq 0$ for each nontrivial Dirichlet character $\chi \mod n$, deduce that the set P of primes $\equiv -1$ mod n satisfies $\frac{\sum_{p \in P} p^{-s}}{\log \frac{1}{s-1}} \to 1 \text{ as } s \to 1^+.$

Q 16 (12 marks).

Are these true or false - indicate one or two lines of reasoning: (i) $\mathbf{Z}_p^* \cup \{0\} = \mathbf{Z}_p$. (ii) If $a := \sum_{i>0} a_i p^i \in \mathbf{Z}_p$ with $a_i = a_{10+i}$ for all i, then $a \in \mathbf{Q}$. (iii) $X^p - p$ has a root in \mathbf{Q}_p . $(iv) \sum_{a=1}^{p-1} (\frac{a}{p}) = 0.$ (v) $\mathbf{Z}/p^2 \mathbf{Z} \cong \mathbf{F}_{p^2}$ as rings. (vi) If $\sum_{n\geq 1} \frac{1}{n^s(n+1)}$ has abscissa of convergence ρ , then $\sum_{n\geq 1} \frac{1}{n^{\rho}(n+1)}$ con-

verges.